

Development of a UL Standard for the Utility Interconnection of DG Products Subcontract Number: NAD-1-30605-2

Principal Investigator: Tim Zgonena, Underwriters Laboratories

NREL Technical Monitor: Benjamin Kroposki

Electric Distribution Transformation Program

2004 Annual Program and Peer Review Meeting, October 28-30, 2003, Coronado (San Diego), California

Present North American Utility Grid and DG

(Current Practice)

- Traditional utility electric power systems were designed to support a one way power flow from the point of generation through a transmission system to distribution level loads.
- These systems were not originally intended to accommodate the backfeed from Distributed Generation DG active generation at the distribution level.

Electric Utilities Needs and Concerns Regarding DG

- Reliable Power Grid Operation
- Protection Against Faults
- Power Quality
- Impact on Utility Monitoring and Switching Equipment
- Impact on Other Utilization Equipment.
- Liability Problems Related to the Above Items

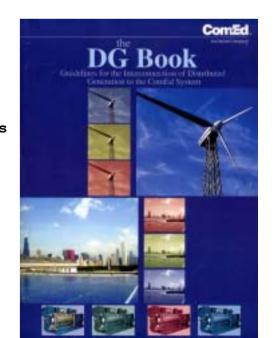
Incompatibility Problem

- Utilities want an assurance that interconnected DG equipment will operate properly after it is manufactured and after years of service in the field.
- Most established utility test methods and test equipment, historically used to test utility protective relays, are not compatible with the new microprocessor-based interconnected DG equipment.

Resulting Situation for DG Equipment

- Most utilities and state utility commissions are proceeding very cautiously
- Creation of individual utility or state DG interconnection requirements, which are used to closely evaluate installations of DG products.
- DG products and installations are regularly subjected burdensome investigations by a variable cast of regulators.

I've got a Photovoltaic project in downtown Madison, Wisconsin near the State Capitol. This area is served electricity from my company's low-voltage 208 Volt network system.


In the process of evaluating the SMA 2500 U inverter were there any tests simulating operation on a low-voltage network system?

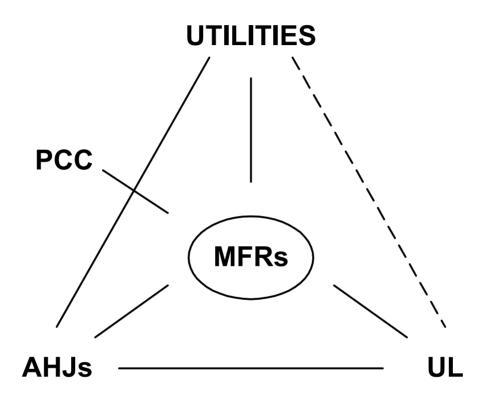
Please call with questions.

Thank you,

Senior Engineer

Madison Gas and Electric Company

DG Product Safety Evaluations


Product Safety

- Electrical inspectors use the National Electric Code (NEC) or an augmented version of the NEC.
- Arts. 690 (PV), 692 (Fuel Cells) specifically call for utility-interactive equipment to be listed.
- Typically, unfamiliar equipment is required by the local inspector to be listed.
- Listing handled by a National Recognized Testing Laboratory (NRTL).
- Listing evaluations best done early into production design, to avoid building-in problems.
- Listing may not be suitable for handling installation-specific concerns.
- Listing may not be recognized by local utility authority as meeting their concerns.

How Does This All Add Up?

 Presently, manufacturers and installers of DG products have a difficult time getting their products installed, connected to the utility grid, and operating.

Project Objective / Technical Approach

- Under this contract, we are using the Standards
 Technical Panel (STP) process to combine UL's
 safety and utility interconnection requirements with
 those in the published IEEE 1547 standard.
- Result is an ANSI standard that can be used to evaluate utility interconnected DG products to address the needs of Electrical AHJ's and Utility Interconnection Engineers

Ultimate Goal

 This work will facilitate a streamlined system with identifiable, nationally common tasks and goals under which utility interconnected DG products may be designed, produced, evaluated, certified, sold, installed and operated in a smooth and agreeable manner for all parities involved.

Base Year / 2001 Tasks Completed

- Situation Analysis
- NEC and Other Interconnection Document
 Review and Report
- Create STP Meeting Agenda and Assemble a Balanced UL1741 STP
- Host the STP Meeting
- Create STP Meeting Report
- Annual Report Draft

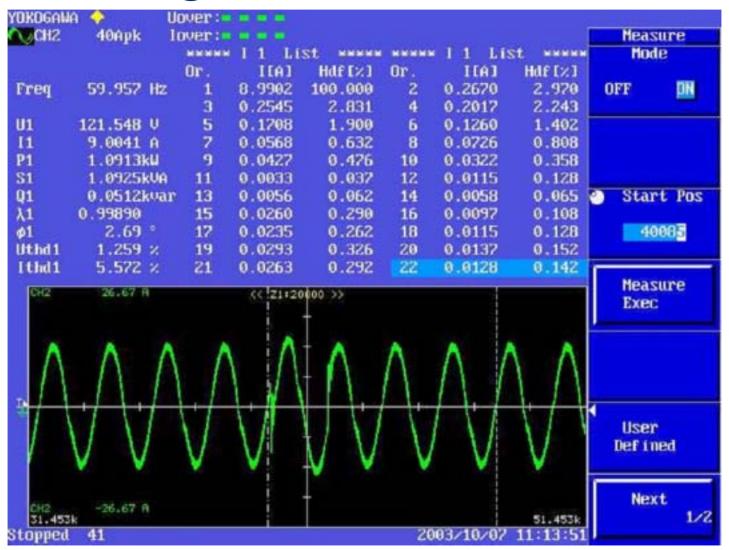
- April 23, 2001
 - May 31, 2001
- Oct 9, 2001
- Nov 7-9, 2001
- Dec 11, 2001
- Jan 16, 2001

OPTION YEAR 1 DELIVERABLES

- D-2.2 (Task 6): Progress Report on the Rough Draft.
- Completed May 31, 2002.
- D-2.3 (Task 7): Report on Comments to Rough Draft.
- Completed September 27, 2002.
- **D-2.4 (Task 8):** Progress Report on the Second Draft
- Completed November 1, 2002.
- D-2.5 (Task 9): Report on comments to the Second Draft.
- Completed December 30, 2002.
- D-2.6 : Annual Report.
- Completed February 1, 2003.

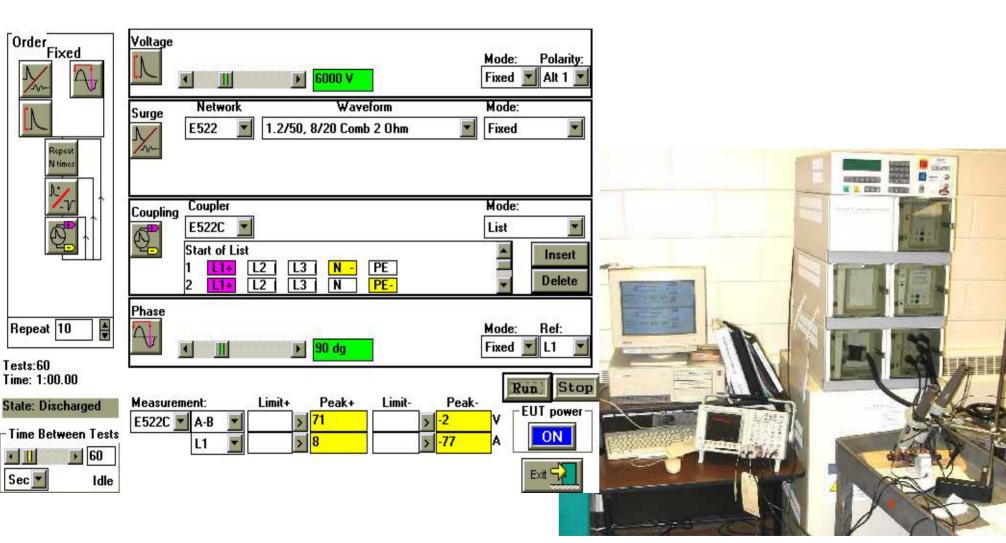
FEBRUARY THROUGH JULY 2003

 Option Year 2 of the subcontract was not formalized in mid-July 2003 due to a delay in DOE funding allocations. As such the work schedule was modified to accommodate the change in subcontract timing. Despite this delay UL continued work on this project.



- The limits of higher order harmonics presently specified in most interconnection requirements are outside of the specified accuracy requirements of normally available test equipment.
- The measurement and data processing methods of commonly available test equipment conflict with many anti-islanding schemes and can result in measurement inaccuracies.
- Research into resolving these measurement issues is resulting in modification to both UL1741 and IEEE P1547.1.

Sample Data from UL Testing



UL Testing for Harmonics

UL Surge Testing

Inductive Load Bank for Islanding Test

PLANNED OPTION YEAR 2 DELIVERABLES

- D-3.2 (Task 10): Progress Report on the 3rd Draft. Due Sep 1, 2003
- D-3.3 (Task 11): Report on comments to the 3rd Draft. Due Nov 30, 2003
- D-3.4.(i) (Task 12): Interim Report on test equipment. Due Nov 30, 2003
- D-3.4.(ii) (Task 12): Final Report on test equipment. Due Feb 28, 2004
- D-3.5 (Task 13): Report on validation of test facilities. Due June 8, 2004
- D-3.6 (Task 14): Report on witness testing. Due July 15, 2004
- D-3.7 Final Report. Due August 30, 2004.

Life-Cycle Project Budget

	Total (\$K)	DOE/NREL	UL Cost Share
Base Year	276	169	107
Option Year 1	392	169	223
Option Year 2	215	121	94
Total	883	460	424

Additional Related Standards Work

- Publication of both the IEEE P1547 and IEEE P1547.1 is crucial to the success of this project.
- Contract PI is responsible for the maintenance of UL1741 and is a member of the writing committee for both the IEEE P1547 and IEEE P1547.1 documents.
- The need for these documents has driven both these writing committees to maintain the same fast track pace as the IEEE 1547 working group.
- Many UL1741 STP members are also WG members of the IEEE 1547.1 document to ensure consistency between these two documents.

Interactions & Collaborations

- NREL
- SANDIA NATIONAL LABS
- NYSERDA
- CALIFORNIA ENERGY COMMISSION
- LIPA / KEYSPAN
- ENDECON
- BALLARD POWER SYSTEMS

Additional Testing Research and Collaborations

- Working with OEM to design a 250KW simulated utility for DG testing.
- Collaboration with Sandia Labs on the Harmonic Distortion testing and Anti-Islanding Testing.
- Implementation of the Anti-Islanding Test loads for larger three phase products
- Researching DG Test equipment for data acquisition automation.
- Performing Feasibility Study with NREL on LC simulator.

Impacts and Benefits

- This combination of requirements will yield a DG ANSI Standard that can be used to evaluate utility interconnected DG products for both electrical safety and utility interconnection to address the needs of Electrical AHJs and Utility Interconnection Engineers.
- This help will standardize interconnection procedures and requirements for DG owners.
- This should lead to reduce interconnection costs.

Contact Information

Tim Zgonena

Underwriters Laboratories Inc. 333 Pfingsten Rd. Northbrook, IL 60062

847-272-8800 ext. 43051 timothy.p.zgonena@us.ul.com